МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ **БАШКИРСКИЙ ИНСТИТУТ ТЕХНОЛОГИЙ И УПРАВЛЕНИЯ (ФИЛИАЛ)** ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ОБРАЗОВАНИЯ

«МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕХНОЛОГИЙ И УПРАВЛЕНИЯ ИМЕНИ К.Г. РАЗУМОВСКОГО (ПЕРВЫЙ КАЗАЧИЙ УНИВЕРСИТЕТ)»

(БИТУ (филиал) ФГБОУ ВО «МГУТУ им. К.Г. Разумовского (ПКУ)»)

Кафедра «Информационные технологии и системы управления»

«Утверждаю» Директор БИТУ (филиал) ФГБОУ ВО «МГУТУ им. К.Г. Разумовского (ПКУ)» _______Е.В. Кузнецова _______«06» февраля 2020 г.

Рабочая программа дисциплины

Б1.О.02.16 – Архитектура вычислительных систем

Направление подготовки 09.03.01 Информатика и вычислительная техника

Направленность (профиль) подготовки <u>Программное обеспечение вычислительной техники и автоматизированных систем в пищевой промышленности и отраслях агропромышленного комплекса</u>

Квалификация выпускника – бакалавр

Форма обучения очно-заочная

Мелеуз 2020 г.

Рабочая программа дисциплины «Архитектура вычислительных разработана на основании федерального государственного образовательного стандарта образования ПО направлению подготовки 09.03.01 Информатика высшего вычислительная техника, утвержденного приказом Министерства образования и науки Российской Федерации от 19 сентября 2017г. №929 «Об утверждении федерального государственного образовательного стандарта высшего образования по направлению подготовки 09.03.01 Информатика и вычислительная техника», учебного плана по основной профессиональной образовательной программе высшего образования «Программное обеспечение вычислительной техники и автоматизированных систем в пищевой промышленности и отраслях агропромышленного комплекса».

Рабочая программа дисциплины разработана группой в составе: к.т.н. Колязов К.А., к.п.н. Одинокова Е.В., к.ф.-м.н. Смирнов Д.Ю., к.п.н. Тучкина Л.К., к.п.н. Яшин Д.Д., ст. преподаватель Остапенко А.Е.

Яшин Д.Д., ст. преподаватель Остапенко А	1	мирнов д.10.,	К.11.Н	г. Тучкина Л	.К., к.п.н.
Руководитель основной профессионально образовательной программы кандидат физико-математических наук, до		(подпись)	6	Д.Ю. Сми	рнов
Рабочая программа дисциплины обсу «Информационные технологии и системы Протокол № 7 от «05» февраля 2020 года		утверждена и»	на	заседании	кафедры
И.о. заведующего кафедрой к.п.н., доцент	(подпись)	E.B. C	Эдин	юкова	

Оглавление

1. Цели и задачи дисциплины	4
2. Место дисциплины в структуре ОПОП:	4
3. Требования к результатам освоения дисциплины:	4
4. Объем дисциплины и виды учебной работы	5
5. Содержание учебной дисциплины	6
5.1. Содержание разделов и тем дисциплины	6
5.2. Разделы дисциплины и междисциплинарные связи с обеспечиваем (последующими) дисциплинами	мыми 6
5.3. Разделы и темы дисциплины и виды занятий	6
6.Перечень лабораторных работ	7
6.1. План самостоятельной работы студентов	7
6.2. Методические указания по организации самостоятельной работы с	студентов 8
7. Примерная тематика курсовых работ (проектов) (при наличии)	8
8. Учебно-методическое и информационное обеспечение дисциплины	9
9. Материально-техническое обеспечение дисциплины:	9
11. Оценочные средства (ОС):	11
12. Организация образовательного процесса для лиц с ограниченными	
	19
13. Лист регистрации изменений	20

1. Цели и задачи дисциплины

Целью дисциплины является обучение студентов основным понятиям, моделям и методам информационных технологий, формирование знаний, умений и навыков решения задач автоматизации информационных процессов на основе информационных технологий. Основными задачами изучения дисциплины являются практическое освоение информационных и информационно-коммуникационных технологий и инструментальных средств для решения типовых общенаучных задач в своей профессиональной деятельности и для организации своего труда.

2. Место дисциплины в структуре ОПОП:

Дисциплина «**Архитектура вычислительных систем**» - дисциплина вариативной части учебного плана по направлению подготовки 09.03.01. **Информатика и вычислительная техника (уровень бакалавриата).**

Имеет логическую и содержательно-методическую взаимосвязь:

- с предыдущими дисциплинами: «Базы данных», «Инженерная графика», «Компьютерная графика»;
 - с последующими дисциплинами: «Системы электронного документооборота».

Способствует формированию системы компетенций в области использования современных информационных технологий в профессиональной деятельности.

Требования к «входным» знаниям, умениям и готовностям обучающегося, необходимым при освоении данной дисциплины: знание основ школьного курса информатики и математики: общую характеристику процессов сбора, передачи, обработки и накопления информации; технические и программные средства реализации информационных процессов; модели решения функциональных и вычислительных задач; базы данных; компьютерные сети; основы защиты информации.

3. Требования к результатам освоения дисциплины:

Процесс изучения дисциплины (модуля) направлен на формирование следующих компетенций: ОПК-7 Способен участвовать в настройке и наладке программно-аппаратных комплексов;

В результате изучения дисциплины студент должен:

Знать: историю развития вычислительной техники; программную и аппаратную конфигурацию цифровых и аналоговых ЭВМ и периферийного оборудования; системное программное обеспечение (ОС); виды процессоров, устройство многоядерных процессоров; устройства ввода и вывода данных; основные понятия и определения;

Уметь: инсталлировать, тестировать, испытывать и использовать программноаппаратные средства вычислительных и информационных систем; осуществлять отладку программ для периферийного оборудования ЭВМ; осуществлять техническое оснащение рабочих мест;

Владеть: навыками настройки и наладки программно-аппаратных комплексов; методами монтажа, регулировки основного оборудования компьютера; навыками подключение основных модулей материнской платы; настройки операционной системы и его конфигурирования; навыками подключения периферийного оборудования; навыками установки и конфигурирования программных средств для тестирования и диагностики; способностью подключать и настраивать модули ЭВМ и периферийного оборудования.

Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Процесс освоения учебной дисциплины «Архитектура вычислительных систем» направлен на формирование у обучающихся по программе высшего образования — программе бакалавриата — по направлению подготовки 09.03.01 «Информатика и вычислительная техника», профилю подготовки «Программное обеспечение вычислительной техники и автоматизированных систем в пищевой промышленности и отраслях агропромышленного комплекса» следующих общекультурных, общепрофессиональных и профессиональных компетенций: ОПК-7

Код и описание компетенции	Планируемые результаты обучения по дисциплине
	ОПК-7.1 Знает методы настройки, наладки программно-аппаратных комплексов
ОПК-7 Способен участвовать в настройке и наладке программно-аппаратных комплексов;	ОПК-7.2 Умеет анализировать техническую документацию, производить настройку, наладку и тестирование программно-аппаратных комплексов
, ,	ОПК-7.3 Владеет способами проверки работоспособности программно-аппаратных комплексов

4. Объем дисциплины и виды учебной работы

Очно-заочная форма обучения

Вид учебной работы	Всего часов /	Семестры
	зач. ед.	5
Аудиторные занятия (контактная работа)	32	32
В том числе:		
Лекции	16	16
Практические занятия (ПЗ)		
Семинары (С)		
Лабораторные работы (ЛР)	16	16
Самостоятельная работа	112	112
Вид промежуточной аттестации:		зачёт с оц.
Контроль		
Общая трудоемкость (часов)	144	144
зачетных единиц	4	4

* для обучающихся по индивидуальному учебному плану количество часов контактной и самостоятельной работы устанавливается индивидуальным учебным планом 1 .

Дисциплина реализуется посредством проведения учебных занятий (включая проведение текущего контроля успеваемости и промежуточной аттестации обучающихся). В соответствии с рабочей программой и тематическим планом изучение дисциплины проходит в форме контактной работы обучающихся с преподавателем и самостоятельной работы

для обучающихся по индивидуальному учебному плану - учебному плану, обеспечивающему освоение соответствующей образовательной программы на основе индивидуализации ее содержания с учетом особенностей и образовательных потребностей конкретного обучающегося (в том числе при ускоренном обучении, для обучающихся с ограниченными возможностями здоровья и инвалидов, для лиц, зачисленных для продолжения обучения в соответствии с частью 5 статьи 5 Федерального закона от 05.05.2014 №84-ФЗ «Об особенностях правового регулирования отношений в сфере образования в связи с принятием в Российскую Федерацию Республики Крым и образованием в составе Российской Федерации новых субъектов - Республики Крым и города федерального значения Севастополя и о внесении изменений в Федеральный закон «Об образовании в Российской Федерации»).

обучающихся. При реализации дисциплины предусмотрена аудиторная контактная работа и внеаудиторная контактная работа посредством электронной информационно-образовательной среды. Учебный процесс в аудитории осуществляется в форме лекций и лабораторных занятий. В лекциях раскрываются основные темы изучаемого курса, которые входят в рабочую программу. На лабораторных занятиях более подробно изучается программный материал в плоскости отработки практических умений и навыков и усвоения тем. Внеаудиторная контактная работа включает в себя проведение текущего контроля успеваемости (тестирование) в электронной информационно-образовательной среде.

5. Содержание учебной дисциплины 5.1. Содержание разделов и тем дисциплины

- Тема 1. Архитектура ЭВМ Джона фон Неймана.
- Тема 2. Организация компьютерных систем.
- Тема 3. Цифровой логический уровень.
- Тема 4. Уровень микроархитектуры.
- Тема 5. Уровень архитектуры набора команд.
- Тема 6. Уровень операционной системы.
- Тема 7. Уровень Ассемблера.
- Тема 8. Параллельные компьютерные архитектуры.

5.2. Разделы дисциплины и междисциплинарные связи с обеспечиваемыми (последующими) дисциплинами

No	Наименование	№ разделов и тем данной дисциплины, необходимых				
Π/Π	обеспечиваемых	для изучения обеспечиваемых (последующих) дисциплин				
	(последующих)					
	дисциплин					
2.	Системы электронного	Тема 5	Тема 6	Тема 7	Тема 8	
	документооборота					

5.3. Разделы и темы дисциплины и виды занятий

Очно-заочная форма обучения

Наименование темы	Виды занятий в часах				
	Лекции	Практические занятия	Лабораторн ые занятия	СРС	Всего
Тема 1. Архитектура ЭВМ Джона фон Неймана.	2*			14	16
Тема 2. Организация компьютерных систем.	2*		2	14	18
Тема 3. Цифровой логический уровень.	2*		2	14	18
Тема 4. Уровень микроархитектуры.	2*		2	14	18
Тема 5. Уровень архитектуры набора команд.	2*		2	14	18
Тема 6. Уровень	2*		2	14	18

операционной системы.				
Тема 7. Уровень ассемблера.	2*	2	14	18
Тема 8. Параллельные компьютерные архитектуры	2*	4	14	20

Формы учебных занятий с использованием активных и интерактивных технологий обучения

	oby ici			
Наим	менование разделов (тем), в которых	Образовательные		
	используются активные и/или	технологии		
интера	ктивные образовательные технологии			
1.	Тема 1. Архитектура ЭВМ Джона фон Неймана.	Лекция-визуализация, лекция-беседа		
	Тема 2. Организация компьютерных систем.	Лекция-визуализация, лекция-беседа		
	Тема 3. Цифровой логический уровень	Лекция-визуализация, лекция-беседа		
2.	Тема 4. Уровень микроархитектуры.	Лекция-визуализация, лекция-беседа		
	Тема 5. Уровень архитектуры набора команд.	Лекция-визуализация, лекция-беседа		
	Тема 6. Уровень операционной системы.	Лекция-визуализация, лекция-беседа		
3.	Тема 7. Уровень Ассемблера.	Лекция-визуализация, лекция-беседа		
	Тема 8. Параллельные компьютерные архитектуры	Лекция-визуализация, лекция-беседа		

6.Перечень лабораторных работ

Очно-заочная форма обучения

Наименование семинарских, практических и лабораторных занятий (работ)	Трудоемко сть (час.)	Оценочные средства	Формируемые компетенции
1. Архитектура ЭВМ Джон фон Неймана и её реализация в современных ЭВМ.	2	Отчет по	
2. Изучение топологий и организаций компьютерных сетей	4	лабораторной работе; опрос (демонстраци	
3. Изучение особенностей операционных систем различных архитектур	4	я манипуляций	ОПК-7
4. Ознакомление с языком Ассемблера	2	на компьютере)	
5. Параллельные компьютерные архитектуры	4	1 /	

6.1. План самостоятельной работы студентов

Очно-заочная форма обучения

№	Тема	Вид	Задание	Рекомендуем	Количество
Π/		самостоятельной		ая	часов
П		работы		литература	
1	Тема 1.	Подготовка к	Подготовка к	Осн. 1-2,	112
	Архитектура ЭВМ	лекционным и	лекционном	доп. 1-4	
	Джона фон	лабораторным	у материалу		
	Неймана.	занятиям;	_		
	Тема 2.	составление	подготовить		
	Организация	отчетов по	ответы на		
	компьютерных	лабораторной	контрольные		
	систем.	работе;	вопросы к		
	Тема 3. Цифровой	самостоятельное	лекциям;		
	логический	изучение раздела	подготовка к		
	уровень.	дисциплины.	лаб.		
	Тема 4. Уровень		работам,		
	микроархитектуры.		подготовка		
	Тема 5. Уровень		отчета по		
	архитектуры		лабораторно		
	набора команд.		й работе.		
	Тема 6. Уровень				
	операционной				
	системы.				
	Тема 7. Уровень				
	ассемблера.				
	Тема 8.				
	Параллельные				
	компьютерные				
	архитектуры.				

6.2. Методические указания по организации самостоятельной работы студентов

Самостоятельная работа является важной составляющей в изучении дисциплины и состоит из следующих видов деятельности:

- самостоятельное изучение теоретического материала, в том числе дополнительное изучение материалов лекций;
- подготовка к лабораторным и практическим работам изучение (освоение) теоретической части к выполнению работы;
- создание отчета по выполненной в аудитории лабораторной и практической работе;
- подготовка к защите этих работ по контрольным вопросам (контрольные вопросы к лабораторным работам находятся в конце каждой работы).

Самостоятельная работа над теоретическим материалом направлена на изучение основных понятий и принципов организации вычислительных машин и систем, вычислительных сетей. К этой деятельности относятся подготовка и выполнение лабораторных и практических работ. Лабораторные и практические работы выполняются в процессе изучения курса. Эти работы помогут сформировать умения и навыки самостоятельного проектирования вычислительных сетей, необходимые для будущей профессиональной деятельности выпускника.

7. Примерная тематика курсовых работ (проектов) (при наличии) Не предусмотрены.

8. Учебно-методическое и информационное обеспечение дисциплины а) основная литература:

- 1. Архитектура ЭВМ и вычислительных систем: Учебник / Н.В. Максимов, Т.Л. Партыка, И.И. Попов. 5-е изд., перераб. и доп. М.: Форум: НИЦ ИНФРА-М, 2013. 512 с.: ил.; 60х90 1/16. (Профессиональное образование). (п) ISBN 978-5-91134-742-0 // http://znanium.com/bookread2.php?book=405818
- 2. Кузьмич, Р.И. Вычислительные системы, сети и телекоммуникации: учеб. пособие / Р.И. Кузьмич, А.Н. Пупков, Л.Н. Корпачева. Красноярск: Сиб. федер. ун-т, 2018. 120 с. ISBN 978-5-7638-3943-2. // http://znanium.com/bookread2.php?book=1032192

б) дополнительная литература:

- 1. Архитектура и проектирование программных систем: Монография / Назаров С.В., 2е изд. - М.:НИЦ ИНФРА-М, 2016. - 376 с. // http://znanium.com/bookread2.php?book=542562
- 2. Вычислительная техника: учеб. пособие / Т.Л. Партыка, И.И. Попов. 3-е изд., перераб. и доп. М.: ФОРУМ: ИНФРА-М, 2017. 445 с.: ил. (Среднее профессиональное образование). // http://znanium.com/bookread2.php?book=652875
- 3. Основы архитектуры, устройство и функционирование вычислительных систем: Учебник / В.В. Степина. М.: КУРС: ИНФРА-М, 2018. 288 с. (Среднее профессиональное образование) // http://znanium.com/bookread2.php?book=948678
- 4. Реконфигурируемые вычислительные системы: Учебное пособие / Гузик В.Ф. Ростов-на-Дону:Издательство $IO\Phi V$, 2016. 472 с. // http://znanium.com/bookread2.php?book=989900
- 5. Фисун, А.П. Аппаратные средства вычислительной техники [Электронный ресурс]: учебник для вузов. В 2-х книгах. Книга 2 / В.А. Минаев, А.В. Коськин, И.С. Константинов, В.Т. Еременко, Ю.А. Белевская, В.А. Зернов, С.В. Дворянкин, А.П. Фисун. Орел: ОрелГТУ, 2009. 151 с. // https://rucont.ru/read/787612?file=206350&f=787612

в) программное обеспечение

- 1. Microsoft Windows
- 2. Microsoft Word
- 3. Microsoft Excel
- 4. Microsoft Power Point

г) базы данных, информационно-справочные и поисковые системы

- 1. http://znanium.com/ OOO электронно-библиотечная система "ЗНАНИУМ"
- 2. https://rucont.ru/ OOO "Национальный цифровой ресурс «РУКОНТ»
- 3. http://biblioclub.ru/ ЭБС «Университетская библиотека онлайн»

9. Материально-техническое обеспечение дисциплины:

Учебная аудитория для занятий лекционного типа; лабораторного и занятий семинарского типа; для курсового проектирования (выполнения курсовых работ); для проведения групповых и индивидуальных консультаций; для текущего контроля и промежуточной аттестации, а также помещение для самостоятельной работы обучающихся.

Лаборатория Архитектура вычислительных систем: Рабочие места обучающихся; Рабочее место преподавателя; Ноутбук переносной; Проектор переносной; Экран переносной; Классная доска; 10 рабочих мест обучающихся оснащенные ПЭВМ с подключением к сети интернет и обеспечением доступа в электронную информационнообразовательную среду Университета; Учебно-наглядные пособия.

10. Образовательные технологии:

При реализации учебной дисциплины применяются различные образовательные

технологии, в том числе технологии электронного обучения.

Освоение учебной дисциплины предусматривает использование в учебном процессе активных и интерактивных форм проведения учебных занятий: проведения интерактивных лекций-бесед, лабораторных опытов с целью формирования и развития профессиональных навыков обучающихся.

В процессе обучения применяются современные формы интерактивного обучения. Суть интерактивного обучения состоит в том, что учебный процесс организован таким образом, что практически все учащиеся оказываются вовлеченными в процесс познания, они имеют возможность понимать и рефлектировать по поводу того, что они знают и думают. Совместная деятельность учащихся в процессе познания, освоения учебного материала означает, что каждый вносит свой особый индивидуальный вклад, идет обмен знаниями, идеями, способами деятельности. Причем, происходит это в атмосфере доброжелательности и взаимной поддержки, что позволяет не только получать новое знание, но и развивает саму познавательную деятельность, переводит ее на более высокие формы кооперации и сотрудничества.

Интерактивная деятельность на уроках предполагает организацию и развитие диалогового общения, которое ведет к взаимопониманию, взаимодействию, к совместному решению общих, но значимых для каждого участника задач. Интерактив исключает доминирование как одного выступающего, так и одного мнения над другим. В ходе диалогового обучения учащиеся учатся критически мыслить, решать сложные проблемы на основе анализа обстоятельств и соответствующей информации, взвешивать альтернативные мнения, принимать продуманные решения, участвовать в дискуссиях, общаться с другими людьми. Для этого на уроках организуются индивидуальная, парная и групповая работа, применяются исследовательские проекты, идет работа с документами и различными источниками информации, используются творческие работы.

Интерактивное выступление предполагает ведение постоянного диалога с аудиторией:

- -задавая вопросы, и получая из аудитории ответы;
- -проведение в ходе выступления учебной деловой игры;
- -приглашение специалиста для краткого комментария по обсуждаемой проблеме;
- -использование наглядных пособий (схем, таблиц, диаграмм, рисунков, видеозаписи и др.) и т. п.

Пекция-визуализация — передача информации посредством графического представления в образной форме (слайды, видео-слайды, плакаты и т.д.). Роль преподавателя в лекции-визуализации — комментатор. Подготовка данной лекции преподавателем состоит в том, чтобы изменить, переконструировать учебную информацию по теме лекционного занятия в визуальную форму для представления через технические средства обучения (ноутбук, акустические системы, экран, мультимедийный проектор) или вручную (схемы, рисунки, чертежи и т.п.). Лекцию-визуализацию рекомендуется проводить по темам, ключевым для данного предмета, раздела. При подготовке наглядных материалов следует соблюдать требования и правила, предъявляемые к представлению информации

Лекция-беседа, или «диалог с аудиторией», наиболее распространенная и сравнительно простая форма активного вовлечения слушателей в учебный процесс. Она предполагает непосредственный контакт преподавателя с аудиторией. Ее преимущество состоит в том, что она позволяет привлекать внимание слушателей к наиболее важным вопросам темы, определять содержание и темп изложения учебного материала с учетом особенностей аудитории. Беседа как метод обучения известна еще со времен Сократа. Трудно представить более простой способ индивидуального обучения, построенного на непосредственном контакте сторон. Эффективность этого метода в условиях группового обучения снижается изза того, что не всегда удается вовлечь в беседу каждого из слушателей. В то же время групповая беседа позволяет расшить круг мнений сторон. Участие студентов в лекции-беседе можно обеспечить различными приемами: вопросы к аудитории, которые могут быть как элементарные, с целью сосредоточить внимание слушателей, так и проблемные.

Учебные часы дисциплины предусматривают классическую контактную работу преподавателя с обучающимся в аудитории и контактную работу посредством электронной информационно-образовательной среды в синхронном и асинхронном режиме (вне аудитории) посредством применения возможностей компьютерных технологий (электронная почта).

11. Оценочные средства (ОС):

Оценочные средства по дисциплине «Интеллектуальные информационные системы» разработаны в соответствии с положением о балльно-рейтинговой системе оценки успеваемости студентов $\Phi \Gamma EOY BO$ «МГУТУ им. К.Г. Разумовского (Первый казачий университет)».

Критерии оценки текущих занятий для очной формы обучения

- ✓ посещение студентом одного занятия 1 балл;
- ✓ выполнение заданий для самостоятельной работы от 1 до 3 баллов за каждый пункт задания;
- ✓ активная работа на занятии от 1 до 3 баллов;
- ✓ подготовка доклада— от 1 до 5 баллов;
- ✓ защита лабораторной работы от 1 до 5 баллов.

Критерии оценки тестовых заданий:

√ каждое правильно выполненное задание – 1 балл

БАЛЛЬНО-РЕЙТИНГОВАЯ СИСТЕМА

Максимальная сумма рейтинговых баллов, которая может быть начислена студенту по учебной дисциплине, составляет 100 рейтинговых

Форма промежуточной	Количество баллов			
	Текущий	Рубежный	Сумма	
	контроль	контроль	баллов	
Экзамен	30-70	20-30	60-100	

Рейтинг студента в семестре по дисциплине складывается из рейтинговых баллов, которыми преподаватель в течение семестра оценивает посещение учебных занятий, его текущую работу на занятиях и самостоятельную работу, результаты текущих контрольных работ, тестов, устных опросов, премиальных и штрафных баллов.

Рубежный рейтинг студента по дисциплине складывается из оценки в рейтинговых баллах ответа на экзамене (зачете).

Преподаватель, осуществляющий проведение практических занятий, доводит до сведения студентов на первом занятии информацию о формировании рейтинга студента и рубежного рейтинга.

По окончании семестра каждому студенту выставляется его Рейтинговая оценка текущей успеваемости, которая является оценкой посещаемости занятий, активности на занятиях, качества самостоятельной работы.

Студент допускается к мероприятиям промежуточной аттестации, если его рейтинговая оценка текущей успеваемости (без учета премиальных

рейтинговых баллов) не менее:

по дисциплине, завершающейся экзаменом - 30 рейтинговых баллов;

по дисциплине, завершающейся зачетом - 40 рейтинговых баллов.

Студенты, не набравшие минимальных рейтинговых баллов по учебной дисциплине проходят процедуру добора баллов.

Максимальная рейтинговая оценка текущей успеваемости студента за семестр по результатам текущей работы и текущего контроля знаний (без учета премиальных баллов) составляет: 70 рейтинговых баллов для дисциплин, заканчивающихся экзаменом; 80 рейтинговых баллов для дисциплин, заканчивающихся зачетом.

Ответ студента может быть максимально оценен:

на экзамене в 30 рейтинговых баллов;

на зачете в 20 рейтинговых баллов.

Студент, по желанию, может сдать экзамен или зачет в формате «автомат», если его рейтинг за семестр, с учетом премиальных баллов, составил не менее:

если по результатам изучения дисциплины сдается экзамен

- 60 рейтинговых баллов с выставлением оценки «удовлетворительно»;
- 70 рейтинговых баллов с выставлением оценки «хорошо»;
- 90 рейтинговых баллов с выставлением оценки «отлично»;

если по результатам изучения дисциплины сдается зачет:

- 60 рейтинговых баллов с выставлением оценки «зачтено»

Рейтинговая оценка по дисциплине и соответствующая аттестационная оценка по шкале «зачтено», «удовлетворительно», «хорошо», «отлично» при использовании формата «автомат», проставляется экзаменатором в зачетную книжку и зачетно-экзаменационную ведомость только в день проведения экзамена или зачета согласно расписанию группы, в которой обучается студент.

Для приведения рейтинговой оценки к аттестационной (пятибалльный формат) используется следующая шкала:

Аттестационная оценка по дисциплине	Рейтинг студента по дисциплине	
	(включая премиальные баллы)	
«отлично»	90- 100 баллов	
«хорошо»	70 - 89 баллов	

Рубежный рейтинг по дисциплине у студента на экзамене или дифференцированном зачете менее чем в 20 рейтинговых баллов считается неудовлетворительным (независимо от рейтинга студента в семестре). В этом случае в зачетно-экзаменационную ведомость в графе «Аттестационная оценка» проставляется «неудовлетворительно».

Преподавателю предоставляется право начислять студентам премиальные баллы за активность (участие в научных конференциях, конкурсах, олимпиадах, активная работа на аудиторных занятиях, публикации статей, работа со школьниками, выполнение заданий повышенной сложности, изготовление наглядных пособий и т.д.) в количестве, не превышающем 20 рейтинговых баллов за семестр. Премиальные баллы не входят в сумму рейтинга текущей успеваемости студента, а прибавляются к ним.

11.1. Оценочные средства для входного контроля – вопросы для собеседования.

- 1. Классификация баз данных. Определения, основные функции, виды.
- 2. Основы реляционной алгебры. Определения высказываний, запись, примеры.
- 3. Иерархическая модель данных. Основные понятия, графическое изображение, примеры.
- 4. Сетевая модель данных. Основные понятия, графическое изображение, примеры.
- 5. Реляционная модель данных. Основные понятия, графическое изображение, примеры.
- 6. Термины и определения реляционных баз данных.
- 7. Основные компоненты систем управления реляционными базами данных. Таблицы, запросы, формы, отчеты
 - 8. Нормализация таблиц реляционной базы данных. Определение, виды, понятия.
 - 9. Первая нормальная форма реляционной модели данных. Определение, требования, примеры.
 - 10. Вторая нормальная форма реляционной модели данных. Определение, требования, примеры.
 - 11. Третья нормальная форма реляционной модели данных. Определение, требования, примеры.
- 12. Проектирование связей между таблицами. Назначение, основные правила, варианты поведения зависимой таблицы.
 - 13. Физические модели данных. Определения, назначение информационной модели, цели.
- 14. Файловые структуры организации баз данных. Классификация, вид хранящейся информации, файлы прямого доступа, методы хэширования.

11.2. Оценочные средства текущего контроля – собеседование по вопросам к

лекциям и лабораторным работам.

Код компетенции	Содержание компетенции (части компетенции)	Результаты обучения	Уровни формирования компетенций в процессе освоения образовательной программы
ОПК-7	Способен участвовать в настройке и наладке программно-	Компетенции не сформированы. Знания основ подключения или сопряжения ЭВМ и периферийного оборудования не сформированы.	Недостаточный уровень
	аппаратных комплексов;	Компетенции сформированы. Сформированы базовые знания методов, подходов и приёмов подключения или сопряжения ЭВМ и периферийного оборудования. Демонстрируется низкий уровень сформированных навыков настройки, подключения средств вычислительной техники, определения проблем при выполнении данных операций.	Пороговый уровень
		Компетенции сформированы. Имеются знания методов, подходов и приёмов подключения или сопряжения ЭВМ и периферийного оборудования. Демонстрируется высокий уровень сформированных навыков настройки, подключения средств вычислительной техники, определения проблем при выполнении данных операций.	Продвинутый уровень
		Компетенции сформированы. Базовые знания методов, подходов и приёмов подключения или сопряжения ЭВМ и периферийного оборудования твердые аргументированные, всесторонние. Демонстрируется высокий уровень сформированных навыков настройки, подключения средств. Вычислительной техники,	Высокий уровень

	определения	проблем	при
	выполнении да	нных операци	й.

Материалы для проведения текущего и промежуточного контроля знаний студентов:

Компетен
ции, компонен ты
которых
контролир
уются
ОПК-7
I.
оные
I.
оные
ОПК-7
.1

Тема 5. Уровень архитектуры набора	
команд.	
Тема 6. Уровень операционной системы.	
Тема 7. Уровень ассемблера.	
Тема 8. Параллельные компьютерные	
архитектуры.	

Типовые вопросы для устного опроса

- 1. Что такое ЭВМ? Персональный компьютер?
- 2. Зачем нужна материнская плата?
- 3. Зачем используется блок питания? Корпус?
- 4. Что такое набор микросхем системной логики?
- 5. Что такое форм-фактор?
- 6. Сколько шин в персональном компьютере? Зачем они нужны? Как определить пропускную способность шины?
- 7. Виды памяти? Статическая и динамическая память?
- 8. Что такое интерфейс? Какие интерфейсы используются в ПК?
- 9. Что такое вентиль? Какие значения он может принимать?
- 10. Сколько вентилей необходимо, чтобы получить логические функции НЕ, ИЛИ-НЕ, И-НЕ, И, ИЛИ?
- 11. Что такое таблица истинности? Булева функция? Как они связаны между собой?
- 12. Как получить алгебраическую булеву функцию из таблицы истинности? И наоборот?
- 13. Каким образом можно синтезировать логическую схему по таблице истинности? По алгебраической формуле?
- 14. Как в ЭВМ представляются отрицательные числа и числа с плавающей запятой?
- 15. Что такое дополнительный код? Зачем он используется?
- 16. Что такое флаг? Зачем он используется? Каким образом можно манипулировать флагами? Что такое маска?
- 17. Взаимодействие с устройствами в Linux. Специальные файлы устройств.
- 18. Функции open, close, read, write.
- 19. Терминалы. Типы терминалов. Эмуляция терминала. Режимы работы.
- 20. Управление терминалом. Команды. Низкоуровневое управление.
- 21. Что такое escape-последовательность?
- 22. Как определить escape-последовательности для терминала?
- 23. Что такое шрифт?
- 24. Как он используется при выводе символов на экран?
- 25. Зачем используется кодировочная таблица символов?
- 26. Какие таблицы Вы знаете?
- 27. Почему символы, рисующие рамку в текстовом режиме, называются «псевдографическими»?
- 28. Что такое топология сети?
- 29. Опишите топологию шина. Перечислите недостатки и достоинства.
- 30. Опишите топологию кольцо. Перечислите недостатки и достоинства.
- 31. Опишите топологию звезда. Перечислите недостатки и достоинства.
- 32. Опишите гибридную топологию. Перечислите недостатки и достоинства.
- 33. Опишите прямое соединения компьютеров через последовательные и параллельные порты (COM, USB, LPT, IrDA, Bluetooth);
- 34. Опишите удаленное соединение двух компьютеров через модемы;
- 35. Опишите соединение двух компьютеров в локальную сеть, используя сетевые карты и проводные линии связи;

- 36. Опишите соединения двух компьютеров в локальную сеть, используя встроенные беспроводные интерфейсы Wi-Fi.
- 37. Как происходит соединение двух компьютеров в локальную сеть, использую сетевые карты и проводные линии связи?
- 38. Строение кабеля «витая пара».
- 39. Чем отличаются кабели «витая пара» различных категорий?
- 40. Каковы ограничения на применение «витой пары»?
- 41. Чем различаются схемы соединения "прямой кабель" и "перекрёстный кабель"?
- 42. Что собой представляет Traceroute?
- 43. Как происходит Вызов утилиты traceroute в командной строке Windows?
- 44. Как происходит определение промежуточных маршрутизаторов traceroute?
- 45. Когда процесс трассировки считается завершённым?
- 46. Как определяется достижение пункта назначения?
- 47. Опишите способы соединения двух компьютеров для совместного использования файлов.
- 48. Что собой представляет утилита ping?
- 49. По какому протоколу передаются запросы утилиты ping?
- 50. Что собой представляет эхо-запрос?
- 51. Что собой представляет эхо-ответ?
- 52. Опишите параметры утилиты ping.
- 53. Как происходит вызов утилиты Ping в командной строке Windows?

Вариант вопросов для защиты лабораторной работы

Контрольные вопросы к лабораторной работе №1

- 1. История развития вычислительных машин. Поколения ЭВМ. Обзор устройства и основные принципы работы ЭВМ.
- 2. Понятие архитектуры ЭВМ. Обзор основных компонентов современной ЭВМ. Архитектура Фон Неймана. CISC. RISC.
 - 3. Принципы фон Неймана

Контрольные вопросы к лабораторной работе №2

- 1. История развития компьютерных сетей.
- 2. Преимущества использования сетей. Классификация компьютерных сетей.
- 3. Преимущества использования сетей. Основные характеристики сетей.
- 4. Понятие топологии сети. Базовые топологии локальной сети. Шина. Кольцо. Звезда. Сложные топологии сети.
 - 5. Понятие архитектуры открытых сетей и их преимущества.

Контрольные вопросы к лабораторной работе №3

- 1. История развития и назначение операционных систем.
- 2. Определение операционной системы и её расположение в иерархической структуре программного обеспечения компьютера.
 - 3. Состав и функции операционных систем.
 - 4. Архитектура операционной системы.
 - 5. Классификация ядер операционной системы.
 - 6. Классификация операционных систем.

Контрольные вопросы к лабораторной работе №4

- 1. Пересылка данных в Assembler.
- 2. Команды передачи управления в Assembler.
- 3. Работа с файлами в Assembler.
- 4. Основные директивы ассемблера.
- 5. Арифметические команды.
- 6. Команды пересылки и преобразования данных.
- 7. Команды десятичной арифметики.

Контрольные вопросы к лабораторной работе №5

- 1. Трактовка понятия «архитектура». Рост частоты процессоров в сравнении с ростом производительности, значение архитектуры. Параллелизм. Краткая история появления параллелизма в архитектуре ЭВМ.
- 2. Параллельное выполнение нескольких команд процессором. Суперскалярный процессор. VLIW машины.
- 3. Основные классы современных параллельных компьютеров. SMP, MPP, NUMA, PVP, Кластеры.
- 4. Модели программирования, применяемые в различных классах параллельных ЭВМ. Векторизация, распараллеливание.

11.3. Оценочные средства для промежуточной аттестации

Вопросы к экзамену

Какими взаимосвязанными компонентами может быть представлена архитектура компьютера, характеризующая его логическую организацию?

- 2. ... может быть задана как абстрактное многоуровневое представление физической системы с точки зрения программиста, с закреплением функций за каждым уровнем и установлением интерфейса между различными уровнями.
 - 3. Архитектура компьютера определяет (характеризует) ...
- 4. ... обуславливаются системой команд, характеризующей гибкость программирования, форматирования данных и скоростью выполнения операций, определяющих класс задач, наиболее эффективно решаемых на ВС.
 - 5. Какая система команд применяется для решения экономических задач?
 - 6. Какая система команд применяется для решения задач управления?
 - 7. Какая система команд применяется для решения научно-технических задач?
 - 8. К командам управления относятся ...
 - 9. К аппаратным средствам архитектуры ВС относятся ...
 - 10.Процессор служит для ...
- 11.Специальные устройства, управляющие обменом данных с внешними устройствами называются ...
 - 12. Какие устройства служат для ввода-вывода информации с различных носителей?
 - 13. Какие существуют типы основной многоуровневой памяти?
 - 14. Какие утверждения справедливы для основной памяти?
 - 15. Какие существуют типы каналов ввода-вывода?
 - 16. Какие утверждения справедливы для программного обеспечения (ПО)?
 - 17. Контроллеры ввода-вывода служат для (обеспечивают) ...
- 18.Система взаимодействует с внешним миром через два набора интерфейсов: языки и системные программы. Что относиться к языкам?
- 19.Система взаимодействует с внешним миром через два набора интерфейсов: языки и системные программы. Что относиться к системным программам?
 - 20. Какие выделяют основные характеристики архитектуры фон Неймановского типа?
- 21.Какие существуют подходы к вариантам проектирования архитектуры программного обеспечения ЭВМ?

ПЕРЕЧЕНЬ ЗАДАНИЙ К ЭКЗАМЕНУ

Синтезировать комбинационную схему по заданной таблице истинности.

X1	X2	X3	Y
0	0	0	1
0	0	1	1
0	1	0	0

0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Разработать структурную схему цифрового устройства, которое на последовательно подаваемые входные сигналы $X_1 = 1$ выдаёт последовательность двоичных чисел, совпадающих с двоичным кодом состояний элементарных цифровых автоматов 0, 2, 3, 1, 0, 2 и т. д., а на последовательно подаваемые входные сигналы $X_2 = 1$ выдаёт последовательность 0, 2, 1, 3, 0, 2 и т. д. Сигналы $X_1 = X_2 = 0$ не изменяют состояние автомата. Одновременная подача сигналов $X_1 = 1$ и $X_2 = 1$ исключается. В качестве модели принять автомат Мура. В качестве элементарных автоматов использовать $X_1 = 1$ и $X_2 = 1$ построения схемы выбрать логические элементы «И», «ИЛИ», «НЕ».

1) Задана функция. Перевести её в базис И-НЕ.

$$y = x_1 x_3 + x_0 x_2 x_3 + x_0 x_1 x_2$$

2) Задана функция. Перевести её в базис И-НЕ.

$$y = (x_0 + x_3)(\bar{x}_0 + x_1 + x_2)(\bar{x}_1 + \bar{x}_2 + \bar{x}_3)$$

3) Задана функция. Перевести её в базис И-НЕ и в базис ИЛИ-НЕ.

$$y = x_0 x_3 + (\overline{x_0 + x_2 + x_3})(x_1 + \overline{x_2})$$

С помощью равносильных преобразований упростить формулы логики:

I вариант	II вариант	III вариант
$(x \to y) \lor ((y \to z) \lor \overline{(zx)})$	$x \rightarrow ((\overline{x \vee y}) \& (x \& \overline{y}))$	$(x \to y) \lor ((\overline{yz}) \lor z)$
$(A \lor B) \to (\bar{A} \to C)$	$(\bar{A} \to B) \vee \overline{(A \to B)}$	$((A \lor B) \to A) \lor C$
IV вариант	V вариант	VI вариант
$((xy) \rightarrow x) \rightarrow (x \lor \overline{y})$	$(xy) \rightarrow \overline{x} \overline{\&} \overline{y}$	$x \rightarrow (\bar{x} \lor \bar{x}\bar{y})$
$(A \to B) \to (B \lor \mathcal{C})$	$(A \lor B) \to (B \lor C)$	$(\bar{A}\&\bar{B}) o (A\&B)$

Задание №1. Представить десятичные числа в двоичной, восьмеричной и шестнадцатеричной системах счисления (использовать метод последовательного деления, метод последовательного умножения): $1387,183_{(10)}$ и $2015,05_{(10)}$

Задание №2. Представить двоичные числа в десятичной системе счисления (использовать формулу $x = \sum_{k=1}^n x_k q^{p-k}$, а также метод последовательного удваивания снизу вверх для преобразования целой части числа): $101011110,01_{(2)}$ и $101101010,11_{(2)}$

Задание №3. Представить восьмеричные числа в десятичной системе счисления (использовать формулу $x = \sum_{k=1}^n x_k q^{p-k}$, а также метод последовательного удваивания снизу вверх для преобразования целой части числа): $1357,07_{(8)}$ и $1025,06_{(8)}$

Задание №4. Представить шестнадцатеричные числа в десятичной системе счисления (использовать формулу $x = \sum_{k=1}^{n} x_k q^{p-k}$, а также метод последовательного удваивания снизу вверх для преобразования целой части числа): C5AF,5 (16) и C38F,9D (16)

3a∂aние №5. Вычислить сумму (A+B), разность (A-B) и произведение (A*B) в двоичной системе счисления:

Число А	Число В
11011,101 (2)	1010,11 ₍₂₎
111001,111 (2)	11101,11(2)

3a∂ание №6. Вычислить сумму (A+B), разность (A-B) и произведение (A*B) в восьмеричной системе счисления:

Число А	Число В
7647,742 (8)	1347,01 ₍₈₎
135,54 (8)	25,74 ₍₈₎

3a∂aние №7. Перевести числа в прямой, обратный и дополнительный коды (разрядная сетка содержит 8 разрядов): $1,01001_{(2)}$ и $-1,011001_{(2)}$

3aдание №8. Выполнить сложение в прямом, обратном и дополнительных кодах: +19 (10) и -27(10)

3aдание №9. Выполнить сложение над действительными числами: 0,1101101×10 10 и 0,11001×10 101

3aдание №10. Представить числа в нормализованной форме с плавающей запятой. Изобразить графически, как будет представлено число с плавающей запятой в ячейке памяти ЭВМ с 24 разрядами.

Число А	Число В
-0,100011 ₍₂₎	101,1101 ₍₂₎

12. Организация образовательного процесса для лиц с ограниченными возможностями.

Организация образовательного процесса для лиц с ограниченными возможностями осуществляется в соответствии с «Методическими рекомендациями по организации образовательного процесса для инвалидов и лиц с ограниченными возможностями здоровья в образовательных организациях высшего образования, в том числе оснащенности образовательного процесса» Министерства образования и науки РФ от 08.04.2014г. № АК-44/05вн.

В образовательном процессе используются социально-активные и рефлексивные методы обучения, технологии социокультурной реабилитации с целью оказания помощи в установлении полноценных межличностных отношений с другими студентами, создании комфортного психологического климата в студенческой группе.

Студенты с ограниченными возможностями здоровья, в отличие от остальных студентов, имеют свои специфические особенности восприятия, переработки материала. Подбор и разработка учебных материалов производится с учетом индивидуальных особенностей.

Предусмотрена возможность обучения по индивидуальному графику, при составлении которого возможны различные варианты проведения занятий: в академической группе и индивидуально, на дому с использованием дистанционных образовательных технологий.

13. Лист регистрации изменений

№ п/п	Содержание изменения	Реквизиты документа об утверждении изменения	Дата введения изменения
1.			
2.			
3.			
4.			
5.			